GPU Teaching Kit

UNIMORE

Memory and Data Locality

CUDA Memories

Tiled Parallel Algorithms
Tiled Matrix Multiplication - kernel implementation Handling Arbitrary Matrix Sizes in Tiled Algorithms

Objective

- To learn to effectively use the CUDA memory types in a parallel program
- Importance of memory access efficiency
- Registers, shared memory, global memory
- Scope and lifetime

Review: Image Blur Kernel.

```
// Get the average of the surrounding 2xBLUR_SIZE x 2xBLUR_SIZE box
for(int blurRow = -BLUR_SIZE; blurRow < BLUR_SIZE+1; ++blurRow) {
    for(int blurCol = -BLUR_SIZE; blurCol < BLUR_SIZE+1; ++blurCol) {
        int curRow = Row + blurRow;
        int curCol = Col + blurCol;
        // Verify we have a valid image pixel
        if(curRow > -1 && curRow < h && curCol > -1 && curCol < w) {
            pixVal += in[curRow * w + curCol];
            pixels++; // Keep track of number of pixels in the accumulated total
        }
    }
}
// Write our new pixel value out
out[Row * w + Col] = (unsigned char)(pixVal / pixels);
```


How about performance on a GPU

- All threads access global memory for their input matrix elements
- One memory accesses (4 bytes) per floating-point addition
- 4B/s of memory bandwidth/FLOPS
- Assume a GPU with
- Peak floating-point rate 1,500 GFLOPS with 200 GB/s DRAM bandwidth
$-4 * 1,500=6,000 \mathrm{~GB} / \mathrm{s}$ required to achieve peak FLOPS rating
- The 200 GB/s memory bandwidth limits the execution at 50 GFLOPS
- This limits the execution rate to $3.3 \%(50 / 1500)$ of the peak floating-point execution rate of the device!
- Need to drastically cut down memory accesses to get close to the1,500 GFLOPS

Example - Matrix Multiplication

A Basic Matrix Multiplication

\qquad global \qquad void MatrixMulKernel(float* M, float* N, float* P, int Width) \{

```
    // Calculate the row index of the P element and M
    int Row = blockIdx.y*blockDim.y+threadIdx.y;
    // Calculate the column index of P and N
    int Col = blockIdx.x*blockDim.x+threadIdx.x;
    if ((Row < Width) && (Col < Width)) {
        float Pvalue = 0;
        // each thread computes one element of the block sub-matrix
        for (int k = 0; k < Width; ++k) {
            Pvalue += M[Row*Width+k]*N[k*Width+Col];
        }
        P[Row*Width+Col] = Pvalue;
    }
```

\}

Example - Matrix Multiplication

```
__global
```

\qquad

``` void MatrixMulKernel(float* M, float* N, float* P, int Width) \{
// Calculate the row index of the \(P\) element and \(M\)
int Row = blockIdx.y*blockDim.y+threadIdx.y;
// Calculate the column index of P and N
int Col = blockIdx.x*blockDim.x+threadIdx.x;
```

```
if ((Row < Width) && (Col < Width)) {
    float Pvalue = 0;
    // each thread computes one element of the block sub-matrix
    for (int k = 0; k < Width; ++k) {
            Pvalue += M[Row*Width+k]*N[k*Width+Col];
        }
        P[Row*Width+Col] = Pvalue;
}
```

\}

A Toy Example: Thread to P Data Mapping

Calculation of $P_{0,0}$ and $P_{0,1}$

Memory and Registers in the Von-Neumann Model

Programmer View of CUDA Memories

Declaring CUDA Variables

Variable declaration	Memory	Scope	Lifetime
int LocalVar;	register	thread	thread
__device___shared__ int SharedVar;	shared	block	block
__device__ \quad int GlobalVar;	global	grid	application
__device___constant__ int ConstantVar;	constant	grid	application

- ___device__ is optional when used with \qquad shared \qquad , or \qquad constant \qquad
- Automatic variables reside in a register
- Except per-thread arrays that reside in global memory

Example: Shared Memory Variable Declaration

void blurKernel(unsigned char * in, unsigned char * out, int w, int h) \{

```
__shared___ float ds_in[TILE_WIDTH][TILE_WIDTH];
```


Where to Declare Variables?

Shared Memory in CUDA

- A special type of memory whose contents are explicitly defined and used in the kernel source code
- One in each SM
- Accessed at much higher speed (in both latency and throughput) than global memory
- Scope of access and sharing - thread blocks
- Lifetime - thread block, contents will disappear after the corresponding thread finishes terminates execution
- Accessed by memory load/store instructions
- A form of scratchpad memory in computer architecture

Hardware View of CUDA Memories

Objective

- To understand the motivation and ideas for tiled parallel algorithms
- Reducing the limiting effect of memory bandwidth on parallel kernel performance
- Tiled algorithms and barrier synchronization

Global Memory Access Pattern of the Basic Matrix Multiplication Kernel

Global Memory

Tiling/Blocking - Basic Idea

Global Memory

On-chip Memory

Divide the global memory content into tiles
Focus the computation of threads on one or a small number of tiles at each point in time

Tiling/Blocking - Basic Idea

Global Memory

Basic Concept of Tiling

- In a congested traffic system, significant reduction of vehicles can greatly improve the delay seen by all vehicles
- Carpooling for commuters
- Tiling for global memory accesses
- drivers = threads accessing their memory data operands
- cars = memory access requests

Some Computations are More Challenging to Tile

- Some carpools may be easier than others
- Car pool participants need to have similar work schedule
- Some vehicles may be more suitable for carpooling
- Similar challenges exist in tiling

Carpools need synchronization.

- Good: when people have similar schedule

Worker A	sleep	work	dinner
Time	sleep	work	dinner
Worker B	sla		

Carpools need synchronization.

- Bad: when people have very different schedule

Worker A	party	sleep	work
time	sleep	work	dinner
Worker B	sle		

Same with Tiling

- Good: when threads have similar access timing

- Bad: when threads have very different timing

Barrier Synchronization for Tiling

Outline of Tiling Technique

- Identify a tile of global memory contents that are accessed by multiple threads
- Load the tile from global memory into on-chip memory
- Use barrier synchronization to make sure that all threads are ready to start the phase
- Have the multiple threads to access their data from the on-chip memory
- Use barrier synchronization to make sure that all threads have completed the current phase
- Move on to the next tile

Objective

- To understand the design of a tiled parallel algorithm for matrix multiplication
- Loading a tile
- Phased execution
- Barrier Synchronization

Matrix Multiplication

- Data access pattern
- Each thread - a row of M and a column of N
- Each thread block - a strip of M and a strip of N

Tiled Matrix Multiplication

- Break up the execution of each thread into phases
- so that the data accesses by the thread block in each phase are focused on one tile of M and one tile of N
- The tile is of BLOCK_SIZE elements in each dimension

Col

Loading a Tile

- All threads in a block participate
- Each thread loads one M element and one N element in tiled code

Phase 0 Load for Block $(0,0)$

Shared Memory

$M_{0,0}$	$M_{0,}$	$M_{0,2}$	$M_{0,3}$	M_{n}	$M_{0,1}$
$M_{1,0}$	$M_{1,1}$	$M_{1,2}$	$M_{1,3}$		$M_{1,0}$
$M_{2,0}$	$M_{2,1}$	$M_{2,2}$	$M_{2,3}$		
$M_{3,0}$	$M_{3,1}$	$M_{3,2}$	$M_{3,3}$		

$P_{0,0}$	$P_{0,1}$	$P_{0,2}$	$P_{0,3}$
$P_{1,0}$	$P_{1,1}$	$P_{1,2}$	$P_{1,3}$
$P_{2,0}$	$P_{2,1}$	$P_{2,2}$	$P_{2,3}$
$P_{3,0}$	$P_{3,1}$	$P_{3,2}$	$P_{3,3}$

Phase 0 Use for Block $(0,0)$ (iteration 0)

$N_{0,0}$	$N_{0,1}$	$N_{0,2}$	$N_{0,3}$
$N_{1,0}$	$N_{1,1}$	$N_{1,2}$	$N_{1,3}$
$N_{2,0}$	$N_{2,1}$	$N_{2,2}$	$N_{2,3}$
$N_{3,0}$	$N_{3,1}$	$N_{3,2}$	$N_{3,3}$

Phase 0 Use for Block $(0,0)$ (iteration 1)

$N_{0,0}$	$N_{0,1}$	$N_{0,2}$	$N_{0,3}$
$N_{1,0}$	$N_{1,1}$	$N_{1,2}$	$N_{1,3}$
$N_{2,0}$	$N_{2,1}$	$N_{2,2}$	$N_{2,3}$
$N_{3,0}$	$N_{3,1}$	$N_{3,2}$	$N_{3,3}$

Phase 1 Load for Block $(0,0)$

Phase 1 Use for Block (0,0) (iteration 0)

$N_{0,0}$	$N_{0,1}$	$N_{0,2}$	$N_{0,3}$
$N_{1,0}$	$N_{1,1}$	$N_{1,2}$	$N_{1,3}$
$N_{2,0}$	$N_{2,1}$	$N_{2,2}$	$N_{2,3}$
$N_{3,0}$	$N_{3,1}$	$N_{3,2}$	$N_{3,3}$

$M_{0,0}$	$M_{0,1}$	$M_{0,2}$	$M_{0,3}$
$M_{1,0}$	$M_{1,1}$	$M_{1,2}$	$M_{1,3}$
$M_{2,0}$	$M_{2,1}$	$M_{2,2}$	$M_{2,3}$
$M_{3,0}$	$M_{3,1}$	$M_{3,2}$	$M_{3,3}$

Shared Memory

Phase 1 Use for Block $(0,0)$ (iteration 1)

$N_{0,0}$	$N_{0,1}$	$N_{0,2}$	$N_{0,3}$
$N_{1,0}$	$N_{1,1}$	$N_{1,2}$	$N_{1,3}$
$N_{2,0}$	$N_{2,1}$	$N_{2,2}$	$N_{2,3}$
$N_{3,0}$	$N_{3,1}$	$N_{3,2}$	$N_{3,3}$

$M_{0,0}$	$M_{0,1}$	$M_{0,2}$	$M_{0,3}$
$M_{1,0}$	$M_{1,1}$	$M_{1,2}$	$M_{1,3}$
$M_{2,0}$	$M_{2,1}$	$M_{2,2}$	$M_{2,3}$
$M_{3,0}$	$M_{3,1}$	$M_{3,2}$	$M_{3,3}$

Shared Memory

Execution Phases of Toy Example

	Phase 0			Phase 1		
thread ${ }_{0,0}$	$\begin{aligned} & \mathbf{M}_{\mathbf{0 , 0}} \\ & \downarrow \\ & \operatorname{Mds}_{0,0} \end{aligned}$	$\begin{aligned} & \mathbf{N}_{\mathbf{0 , 0}} \\ & \downarrow \\ & \mathrm{Nds}_{0,0} \end{aligned}$	PValue ${ }_{0,0}+=$ $\mathrm{Mds}_{0,0} * \mathrm{Nds}_{0,0}+$ $\operatorname{Mds}_{0,1}{ }^{*} \mathrm{Nds}_{1,0}$	$\begin{aligned} & \mathbf{M}_{0,2} \\ & \downarrow \\ & \operatorname{Mds}_{0,0} \end{aligned}$	$\begin{aligned} & \mathbf{N}_{\mathbf{2 , 0}} \\ & \downarrow \\ & \mathrm{Nds}_{0,0} \end{aligned}$	PValue ${ }_{0,0}+=$ $\mathrm{Mds}_{0,0} * \mathrm{Nds}_{0,0}+$ $\operatorname{Mds}_{0,1}{ }^{*} \mathrm{Nds}_{1,0}$
thread ${ }_{0,1}$	$\begin{aligned} & \mathbf{M}_{\mathbf{0 , 1}} \\ & \downarrow \\ & \mathrm{Mds}_{0,1} \end{aligned}$	$\begin{aligned} & \mathbf{N}_{\mathbf{0 , 1}} \\ & \downarrow \\ & \mathrm{Nds}_{1,0} \end{aligned}$	PValue $_{0,1}+=$ $\mathrm{Mds}_{0,0} * \mathrm{Nds}_{0,1}+$ $\operatorname{Mds}_{0,1} * \mathrm{Nds}_{1,1}$	$\begin{aligned} & \mathbf{M}_{0,3} \\ & \downarrow \\ & \operatorname{Mds}_{0,1} \end{aligned}$	$\mathbf{N}_{2,1}$ \downarrow $\mathrm{Nds}_{0,1}$	PValue $_{0,1}+=$ $\mathrm{Mds}_{0,0} * \mathrm{Nds}_{0,1}+$ $\operatorname{Mds}_{0,1} * \operatorname{Nds}_{1,1}$
thread ${ }_{1,0}$	$\begin{aligned} & \mathbf{M}_{\mathbf{1 , 0}} \\ & \downarrow \\ & \mathrm{Mds}_{1,0} \end{aligned}$	$\begin{aligned} & \mathbf{N}_{\mathbf{1 , 0}} \\ & \downarrow \\ & \mathrm{Nds}_{1,0} \end{aligned}$	$\begin{aligned} & \text { PValue }_{1,0}+= \\ & \operatorname{Mds}_{1,0} * \mathrm{Nds}_{0,0}+ \\ & \operatorname{Mds}_{1,1} * \mathrm{Nds}_{1,0} \end{aligned}$	$\begin{aligned} & \mathbf{M}_{1, \mathbf{2}} \\ & \downarrow \\ & \mathrm{Mds}_{1,0} \end{aligned}$	$\begin{aligned} & \mathbf{N}_{3,0} \\ & \downarrow \\ & \mathrm{Nds}_{1,0} \end{aligned}$	$\begin{aligned} & \text { PValue }_{1,0}+= \\ & \operatorname{Mds}_{1,0} * \mathrm{Nds}_{0,0}+ \\ & \operatorname{Mds}_{1,1} * \mathrm{Nds}_{1,0} \end{aligned}$
thread $_{1,1}$	$\begin{aligned} & \mathbf{M}_{\mathbf{1 , 1}} \\ & \downarrow \\ & \mathrm{Mds}_{1,1} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathbf{N}_{\mathbf{1 , 1}} \\ & \downarrow \\ & \mathrm{Nds}_{1,1} \end{aligned}$	$\begin{aligned} & \text { PValue }_{1,1}+= \\ & \operatorname{Mds}_{1,0} * \mathrm{Nds}_{0,1}+ \\ & \mathrm{Mds}_{1,1} * \mathrm{Nds}_{1,1} \end{aligned}$	$\begin{aligned} & \mathbf{M}_{1,3} \\ & \downarrow \\ & \operatorname{Mds}_{1,1} \end{aligned}$	$\mathbf{N}_{3,1}$ \downarrow $\mathrm{Nds}_{1,1}$	$\begin{aligned} & \text { PValue }_{1,1}+= \\ & \operatorname{Mds}_{1,0} * \operatorname{Nds}_{0,1}+ \\ & \operatorname{Mds}_{1,1} * \mathrm{Nds}_{1,1} \end{aligned}$

Execution Phases of Toy Example (cont.)

	Phase 0			Phase 1		
thread ${ }_{0,0}$	$\begin{aligned} & \mathbf{M}_{\mathbf{0 , 0}} \\ & \downarrow \\ & \mathrm{Mds}_{0,0} \end{aligned}$	$\begin{aligned} & \mathbf{N}_{\mathbf{0 , 0}} \\ & \downarrow \\ & \mathrm{Nds}_{0,0} \end{aligned}$	$\begin{aligned} & \text { PValue }{ }_{0,0}+= \\ & \text { Mds }_{0,0} * \mathrm{Nds}_{0,0}+ \\ & \operatorname{Mds}_{0,1} * \mathrm{Nds}_{1,0} \end{aligned}$	$\begin{aligned} & \mathbf{M}_{0,2} \\ & \downarrow \\ & \operatorname{Mds}_{0,0} \end{aligned}$	$\mathbf{N}_{2,0}$ \downarrow $\mathrm{Nds}_{0,0}$	$\begin{aligned} & \text { PValue }_{0,0}+= \\ & \text { Mds }_{0,0} * \operatorname{Nds}_{0,0}+ \\ & \operatorname{Mds}_{0,1} * \mathrm{Nds}_{1,0} \end{aligned}$
thread ${ }_{0,1}$	$\begin{aligned} & \mathbf{M}_{0,1} \\ & \downarrow \\ & \text { Mds }_{0,1} \end{aligned}$	$\begin{aligned} & \mathbf{N}_{\mathbf{0 , 1}} \\ & \downarrow \\ & \mathrm{Nds}_{1,0} \end{aligned}$	$\begin{array}{\|l} \hline \text { PValue }_{0,1}+= \\ \text { Mds }_{0}{ }^{*} \mathrm{Nds}_{0,1} \\ \operatorname{Mds}_{0,1} \end{array}+\mathrm{Nds}_{1,1}+$	$\mathbf{M}_{0,3}$ \downarrow $\mathrm{Mds}_{0,1}$	$\mathbf{N}_{2,1}$ \downarrow $\mathrm{Nds}_{0,1}$	$\begin{aligned} & \text { PValue }_{0,1}+= \\ & \text { Mds }_{0,0} * \operatorname{Nds}_{0,1}+ \\ & \operatorname{Mds}_{0,1} * \operatorname{Nds}_{1,1} \end{aligned}$
thread $_{1,0}$	$\begin{aligned} & \mathbf{M}_{1,0} \\ & \downarrow \\ & \operatorname{Mds}_{1,0} \end{aligned}$	$\begin{aligned} & \mathbf{N}_{\mathbf{1 , 0}} \\ & \downarrow \\ & \mathrm{Nds}_{1,0} \end{aligned}$	$\begin{aligned} & \text { PValue }_{1,0}+= \\ & \text { Mds }_{1,0} * \mathrm{Nds}_{0,0}+ \\ & \mathrm{Mds}_{1,1} * \mathrm{Nds}_{1,0} \end{aligned}$	$\mathbf{M}_{1,2}$ \downarrow Mds $_{1,0}$	$\begin{aligned} & \mathbf{N}_{3, \mathbf{0}} \\ & \downarrow \\ & \mathrm{Nds}_{1,0} \end{aligned}$	PValue $_{1,0}+=$ $\operatorname{Mds}_{1,0} * \mathrm{Nds}_{0,0}+$ $\mathrm{Mds}_{1,1}{ }^{*} \mathrm{Nds}_{1,0}$
thread ${ }_{1,1}$	$\begin{aligned} & \mathbf{M}_{\mathbf{1 , 1}} \\ & \downarrow \\ & \text { Mds }_{1,1} \end{aligned}$	$\begin{aligned} & \mathbf{N}_{\mathbf{1 , 1}} \\ & \downarrow \\ & \mathrm{Nds}_{1,1} \end{aligned}$	$\begin{aligned} & \text { PValue }_{1,1}+= \\ & \operatorname{Mds}_{1,0} * \mathrm{Nds}_{0,1}+ \\ & \operatorname{Mds}_{1,1} * \mathrm{Nds}_{1,1} \end{aligned}$	$\begin{aligned} & \mathbf{M}_{1,3} \\ & \downarrow \\ & \text { Mds }_{1,1} \end{aligned}$	$\begin{aligned} & \mathbf{N}_{3,1} \\ & \downarrow \\ & \mathrm{Nds}_{1,1} \end{aligned}$	PValue $_{1,1}+=$ $\operatorname{Mds}_{1,0} * \mathrm{Nds}_{0,1}+$ $\mathrm{Mds}_{1,1} * \mathrm{Nds}_{1,1}$

Shared memory allows each value to be accessed by multiple threads

Barrier Synchronization

- Synchronize all threads in a block
- __syncthreads()
- All threads in the same block must reach the __syncthreads() before any of the them can move on
- Best used to coordinate the phased execution tiled algorithms
- To ensure that all elements of a tile are loaded at the beginning of a phase
- To ensure that all elements of a tile are consumed at the end of a phase

Objective

- To learn to write a tiled matrix-multiplication kernel
- Loading and using tiles for matrix multiplication
- Barrier synchronization, shared memory
- Resource Considerations
- Assume that Width is a multiple of tile size for simplicity

Loading Input Tile 0 of M (Phase 0)

- Have each thread load an M element and an N element at the same relative position as its P element.
int Row $=$ by $*$ blockDim. $y+$ ty; int Col $=\mathrm{bx}$ * blockDim. $\mathrm{x}+\mathrm{tx}$;
2D indexing for accessing Tile 0 :
$\frac{\text { M|Rowlltx] }}{\mathrm{N}[t y][\mathrm{Col}]}$

Loading Input Tile 0 of N (Phase 0)

- Have each thread load an M element and an N element at the same relative position as its P element.
int Row = by * blockDim. $\mathrm{y}+\mathrm{ty}$; int Col $=b x *$ blockDim. $x+t x ;$ 2D indexing for accessing Tile 0:

Loading Input Tile 1 of M (Phase 1)

2D indexing for accessing Tile 1:
M[Row][1*TILE_WIDTH + tx]
N[1*TILE*WIDTH + ty][Col]

Col

Loading Input Tile 1 of N (Phase 1)

2D indexing for accessing Tile 1: M[Row][1*TILE WIDTH $+t x]$ N[1*TILE*WIDTH + ty][Col]

Col

M and N are dynamically allocated - use 1D indexing

M[Row][p*TILE_WIDTH+tx]
M[Row*Width + p^{*} TILE_WIDTH + tx]
N[p*TILE_WIDTH+ty][Col]
N[(p*TILE_WIDTH+ty)*Width + Col]

where p is the sequence number of the current phase

Tiled Matrix Multiplication Kernel

\qquad
\qquad void MatrixMulKernel(float* M, float* N, float* P, Int Width)

```
    __
        shared
                float ds_M[TILE_WIDTH][TILE_WIDTH];
```

\qquad

```
        shared
```

\qquad

```
                        float ds_N[TILE_WIDTH][TILE_WIDTH];
    int bx = blockIdx.x; int by = blockIdx.y;
    int tx = threadIdx.x; int ty = threadIdx.y;
    int Row = by * blockDim.y + ty;
    int Col = bx * blockDim.x + tx;
    float Pvalue = 0;
// Loop over the M and N tiles required to compute the P element
for (int p = 0; p < n/TILE_WIDTH; + +p) {
        // Collaborative loading of M and N tiles into shared memory
        ds_M[ty][tx] = M[Row*Width + p*TILE_WIDTH+tx];
        ds_N[ty][tx] = N[(t*TILE_WIDTH+ty)*Width + Col];
        __syncthreads();
        for (int i = 0; i < TILE_WIDTH; ++i)Pvalue += ds_M[ty][i] * ds_N[i][tx];
        __synchthreads();
    }
    P[Row*Width+Col] = Pvalue;
```

\}

Tiled Matrix Multiplication Kernel

```
__global__ void MatrixMulKernel(float* M, float* N, float* P, Int Width)
{
    __shared__ float ds_M[TILE_WIDTH][TILE_WIDTH];
```

\qquad

``` shared
``` \(\qquad\)
``` float ds_N[TILE_WIDTH][TILE_WIDTH];
    int bx = blockIdx.x; int by = blockIdx.y;
    int tx = threadIdx.x; int ty = threadIdx.y;
    int Row = by * blockDim.y + ty;
    int Col = bx * blockDim.x + tx;
    float Pvalue = 0;
// Loop over the M and N tiles required to compute the P element
for (int p = 0; p < n/TILE_WIDTH; ++p) {
    // Collaborative loading of M and N tiles into shared memory
    ds_M[ty][tx] = M[Row*Width + p*TILE_WIDTH+tx];
    ds_N[ty][tx] = N[(t*TILE_WIDTH+ty)*Width + Col];
    __syncthreads();
        for (int i = 0; i < TILE_WIDTH; ++i)Pvalue += ds_M[ty][i] * ds_N[i][tx];
        __synchthreads();
    }
    P[Row*Width+Col] = Pvalue;
}
```


Tiled Matrix Multiplication Kernel

```
__global__ void MatrixMulKernel(float* M, float* N, float* P, Int Width)
{
    __shared__ float ds_M[TILE_WIDTH][TILE_WIDTH];
```

\qquad

```
        shared
```

\qquad

```
                        float ds_N[TILE_WIDTH][TILE_WIDTH];
    int bx = blockIdx.x; int by = blockIdx.y;
    int tx = threadIdx.x; int ty = threadIdx.y;
    int Row = by * blockDim.y + ty;
    int Col = bx * blockDim.x + tx;
    float Pvalue = 0;
// Loop over the M and N tiles required to compute the P element
for (int p = 0; p < n/TILE_WIDTH; ++p) {
        // Collaborative loading of M and N tiles into shared memory
        ds_M[ty][tx] = M[Row*Width + p*TILE_WIDTH+tx];
        ds_N[ty][tx] = N[(t*TILE_WIDTH+ty)*Width + Col];
        ___syncthreads();
```

 for (int \(\left.i=0 ; i<T I L E _W I D T H ; ~++i\right) P v a l u e ~+=~ d s _M[t y][i] ~ * ~ d s _N[i][t x] ;\)
 synchthreads();
 P[Row*Width+Col] = Pvalue;
 \}

Tile (Thread Block) Size Considerations

- Each thread block should have many threads
- TILE_WIDTH of 16 gives $16 * 16=256$ threads
- TILE_WIDTH of 32 gives $32 * 32=1024$ threads
- For 16, in each phase, each block performs $2^{*} 256=512$ float loads from global memory for 256 * $\left(2^{*} 16\right)=8,192$ mul/add operations. (16 floating-point operations for each memory load)
- For 32, in each phase, each block performs 2*1024 = 2048 float loads from global memory for 1024 * $\left(2^{*} 32\right)=65,536$ mul/add operations. (32 floating-point operation for each memory load)

Shared Memory and Threading

- For an SM with 16KB shared memory
- Shared memory size is implementation dependent!
- For TILE_WIDTH $=16$, each thread block uses $2^{*} 256 * 4 B=2 K B$ of shared memory.
- For 16KB shared memory, one can potentially have up to 8 thread blocks executing
- This allows up to $8 * 512=4,096$ pending loads. (2 per thread, 256 threads per block)
- The next TILE_WIDTH 32 would lead to $2 * 32 * 32 * 4$ Byte $=8 \mathrm{~K}$ Byte shared memory usage per thread block, allowing 2 thread blocks active at the same time
- However, the thread count limitation of 1536 threads per SM in current generation GPUs will reduce the number of blocks per SM to one!
- Each __syncthread() can reduce the number of active threads for a block
- More thread blocks can be advantageous

Objective

- To learn to handle arbitrary matrix sizes in tiled matrix multiplication
- Boundary condition checking
- Regularizing tile contents
- Rectangular matrices

Handling Matrix of Arbitrary Size

- The tiled matrix multiplication kernel we presented so far can handle only square matrices whose dimensions (Width) are multiples of the tile width (TILE_WIDTH)
- However, real applications need to handle arbitrary sized matrices.
- One could pad (add elements to) the rows and columns into multiples of the tile size, but would have significant space and data transfer time overhead.
- We will take a different approach.

Phase 1 Loads for Block $(0,0)$ for a 3×3 Example

Threads $(1,0)$ and $(1,1)$ need special

Shared Memory

Threads $(0,1)$ and $(1,1)$ need special treatment in loading M tile

Phase 1 Use for Block (0,0) (iteration 0)

Phase 1 Use for Block (0,0) (iteration 1)

All Threads need special treatment. None of them should introduce invalidate contributions to their P elements.

Phase 0 Loads for Block $(1,1)$ for a 3x3 Example

Threads $(0,1)$ and $(1,1)$ need special treatment in loading N tile

Threads $(1,0)$ and $(1,1)$ need special treatment in loading M tile

Major Cases in Toy Example

- Threads that do not calculate valid P elements but still need to participate in loading the input tiles
- Phase 0 of $\operatorname{Block}(1,1)$, Thread $(1,0)$, assigned to calculate non-existent $P[3,2]$ but need to participate in loading tile element $\mathrm{N}[1,2]$
- Threads that calculate valid P elements may attempt to load nonexisting input elements when loading input tiles
- Phase 0 of $\operatorname{Block}(0,0)$, Thread $(1,0)$, assigned to calculate valid $P[1,0]$ but attempts to load non-existing $N[3,0]$

A "Simple" Solution

- When a thread is to load any input element, test if it is in the valid index range
- If valid, proceed to load
- Else, do not load, just write a 0
- Rationale: a 0 value will ensure that that the multiply-add step does not affect the final value of the output element
- The condition tested for loading input elements is different from the test for calculating output P element
- A thread that does not calculate valid P element can still participate in loading input tile elements

Phase 1 Use for Block (0,0) (iteration 1)

Boundary Condition for Input M Tile

- Each thread loads
- M[Row][p*TILE_WIDTH+tx]
- M[Row*Width + p*TILE_WIDTH+tx]
- Need to test
- (Row < Width) \&\& (p*TILE_WIDTH+tx < Width)
- If true, load M element
- Else, load 0

Boundary Condition for Input N Tile

- Each thread loads
- N[p*TILE_WIDTH+ty][Col]
- N[(p*TILE_WIDTH+ty)*Width+ Col]
- Need to test
- (p*TILE_WIDTH+ty < Width) \&\& (Col< Width)
- If true, load N element
- Else, load 0

Loading Elements - with boundary check

- 8 for (int $p=0 ; p<($ Width-1) / TILE_WIDTH + 1; ++p) \{
- ++ if(Row < Width \&\& t * TILE_WIDTH+tx < Width) \{
- 9 ds_M[ty][tx] = M[Row * Width + p * TILE_WIDTH + tx];
- ++ \} else \{
$-\quad++\quad$ ds_M[ty][tx] = 0.0;
$-\quad++\quad\}$
_ ++ if (p*TILE_WIDTH+ty < Width \&\&\& Col < Width) \{
- 10 ds_N[ty][tx] = N[(p*TILE_WIDTH + ty) * Width + Col];
- ++ \} else \{
$-\quad++\quad$ ds_N[ty][tx] = 0.0;
- ++ \}
- 11 __syncthreads();

Inner Product - Before and After

- $\quad++\quad$ if(Row $<$ Width \& \& Col $<$ Width $) ~\{$
- 12 for (int i = 0; i < TILE_WIDTH; ++i) \{
- 13 Pvalue += ds_M[ty][i] * ds_N[i][tx];
- $\}$
- 14 __syncthreads();
- 15 \} /* end of outer for loop */
- ++ if (Row < Width \&\& Col < Width)
- 16 P[Row*Width + Col] = Pvalue;
- \} /* end of kernel */

Some Important Points

- For each thread the conditions are different for
- Loading M element
- Loading N element
- Calculating and storing output elements
- The effect of control divergence should be small for large matrices

Handling General Rectangular Matrices

- In general, the matrix multiplication is defined in terms of rectangular matrices
- AjxkM matrix multiplied with a kxIN matrix results in ajxIP matrix
- We have presented square matrix multiplication, a special case
- The kernel function needs to be generalized to handle general rectangular matrices
- The Width argument is replaced by three arguments: j, k, I
- When Width is used to refer to the height of M or height of P, replace it with j
- When Width is used to refer to the width of M or height of N, replace it with k
- When Width is used to refer to the width of N or width of P, replace it with I

GPU Teaching Kit

Accelerated Computing

UNIMORE

(cc) (i) ©

The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under the Creative Commons Attribution-NonCommercial 4.0 International License.

