GPU Teaching Kit

Accelerated Computing

1y
Y,

“~ UNIMORE

5 LINIYERS A IZEGLE SIUISLLI
MODENA = REGGIO EMILIA

Hh
=

Memory and Data Locality

CUDA Memories

Tiled Parallel Algorithms

Tiled Matrix Multiplication — kernel implementation
Handling Arbitrary Matrix Sizes in Tiled Algorithms

Objective

— To learn to effectively use the CUDA memory types in a parallel
program
— Importance of memory access efficiency
— Regqisters, shared memory, global memory
— Scope and lifetime

Anvpia /[unvore [

Review: Image Blur Kernel.

// Get the average of the surrounding 2xBLUR_SIZE x 2xBLUR_SIZE box
for(int blurRow = -BLUR_SIZE; blurRow < BLUR_SIZE+1; ++blurRow) {
for(int blurCol = -BLUR_SIZE; blurCol < BLUR_SIZE+1; ++blurCol) {

int curRow = Row + blurRow;
int curCol = Col + blurCol;
// Verify we have a valid image pixel
if(curRow > -1 && curRow < h && curCol > -1 && curCol < w) {
mmm) pixVal += in[curRow * w + curCol];
pixels++; // Keep track of number of pixels in the accumulated total
}
}
!

// Write our new pixel value out
out[Row * w + Col] = (unsigned char)(pixVal / pixels);

Anvpia /[unvore [

How about performance on a GPU

— All threads access global memory for their input matrix elements
— One memory accesses (4 bytes) per floating-point addition
— 4B/s of memory bandwidth/FLOPS
— Assume a GPU with
— Peak floating-point rate 1,500 GFLOPS with 200 GB/s DRAM bandwidth
— 4*1,500 = 6,000 GB/s required to achieve peak FLOPS rating
— The 200 GB/s memory bandwidth limits the execution at 50 GFLOPS

— This limits the execution rate to 3.3% (50/1500) of the peak
floating-point execution rate of the device!

— Need to drastically cut down memory accesses to get close to
thel,500 GFLOPS

Anvpia /[unvore [

BLOCK_WIDTHE

BLOCK_WIDTH

WIDTH

T oo g

A Basic Matrix Multiplication

__global void MatrixMulKernel (float* M, float* N, float* P, int Width) ({

// Calculate the row index of the P element and M
int Row = blockIdx.y*blockDim.y+threadIdx.y;

// Calculate the column index of P and N
int Col = blockIdx.x*blockDim.x+threadIldx.x;

if ((Row < Width) && (Col < Width)) {
float Pvalue = 0;
// each thread computes one element of the block sub-matrix
for (int k = 0; k < Width; ++k) {
Pvalue += M[Row*Width+k]*N[k*Width+Col];
}
P[Row*Width+Col] = Pvalue;

Anvpia /[unvore [

Example — Matrix Multiplication

__global void MatrixMulKernel (float* M, float* N, float* P, int Width) ({

// Calculate the row index of the P element and M
int Row = blockIdx.y*blockDim.y+threadIdx.y;

// Calculate the column index of P and N
int Col = blockIdx.x*blockDim.x+threadIldx.x;

if ((Row < Width) && (Col < Width)) {
float Pvalue = 0;
// each thread computes one element of the block sub-matrix
for (int k = 0; k < Width; ++k) {
Pvalue += M[Row*Width+k]*N[k*Width+Col];
}
P[Row*Width+Col] = Pvalue;

Anvpia /[unvore [

A Toy Example: Thread to P Data Mapping

Block(0,0) Block(0,1)
Thread(0,1
\ / (0,1) /

Thread(0,0) —__

v
o0 | Po1 | Po2 | Pos| BLOCK WIDTH =2
Thread(1,0) —

P P, |P
Thread(,1) e P s

P2,0 P2,1 I)2,2 P2,3

P3,0 P3,1 P3,2 P3,3

Block(1,0) Block(1,1)

e Eanpia o unmore f

Calculation of P54 and P 4

0,0 0

1,0

2,0

3,0

e Eanupia o/ unmore f

Memory and Registers in the Von-Neumann Model

A 4

Memory o

) v N
Processing Unit

Re
o
*

Control Unit

A

Anvpia /[unvore [

Programmer View of CUDA Memories

Grid
Block (0, 0) Block (1, 0)
Thread (0, 0) Thread (1, 0) Thread (0, 0) Thread (1, 0)

Host

[]
e

<ANVIDIA UNIMORE .

Declaring CUDA Variables

Variable declaration Memory Scope Lifetime
int LocalVar; register thread thread
__device__ __shared__ int SharedVar; shared block block
__device__ int GlobalVar; global grid application
_ _device__ _ constant__ int ConstantVar; constant grid application

— __device__ isoptional when used with ___shared ,or _ constant _
— Automatic variables reside in a register
— Except per-thread arrays that reside in global memory

Anvpia /[unvore [

Example:
Shared Memory Variable Declaration

void blurKernel(unsigned char * in, unsigned char * out, int w, int h)

shared float ds in[TILE WIDTH] [TILE WIDTH];

Where to Declare Variables?

global - register

constant shared

Anvpia /[unvore [

Shared Memory in CUDA

— A special type of memory whose contents are explicitly defined and
used in the kernel source code
— One in each SM

— Accessed at much higher speed (in both latency and throughput) than global
memory

— Scope of access and sharing - thread blocks

— Lifetime — thread block, contents will disappear after the corresponding thread
finishes terminates execution

— Accessed by memory load/store instructions
— A form of scratchpad memory in computer architecture

Hardware View of CUDA Memories

1/0

I
\AR 4

..... > Global Memory D

Processing Unit

Register
Memory File

A —

w
-
Q
=
D
o

I
: + 1
1 ‘ 1 1

Control Unit
PC IR

Processor (SM)

Anvpia /[unvore [

Objective
— To understand the motivation and ideas for tiled parallel algorithms

— Reducing the limiting effect of memory bandwidth on parallel kernel performance
— Tiled algorithms and barrier synchronization

Global Memory Access Pattern
of the Basic Matrix Multiplication Kernel

Global Memory

Tiling/Blocking - Basic ldea
Global Memory

Thread 1 Thread 2

Divide the global memory content into tiles

Focus the computation of threads on one or a small number
of tiles at each point in time

Anvpia /[unvore [

Tiling/Blocking - Basic ldea
Global Memory

On-chip Memory

Thread 1 Thread 2

Basic Concept of Tiling

— In a congested traffic system, significant reduction of vehicles
can greatly improve the delay seen by all vehicles

— Carpooling for commuters

— Tiling for global memory accesses
— drivers = threads accessing their memory data operands
— cars = memory access requests

<ANVIDIA UNIMORE .

Some Computations are More Challenging to Tile

— Some carpools may be easier than others
— Car pool participants need to have similar work schedule
— Some vehicles may be more suitable for carpooling

— Similar challenges exist in tiling

<ANVIDIA UNIMORE .

Carpools need synchronization.

— Good: when people have similar schedule

Worker A sleep work dinner
Time
Worker B sleep work dinner

Carpools need synchronization.

— Bad: when people have very different schedule

Worker A party sleep work
time —
Worker B sleep work dinner

Same with Tiling

— Good: when threads have similar access timing

Thread 1

Thread 2

Thread 1

Thread 2

— Bad: when threads have very different timing

<ANVIDIA UNIMORE .

Barrier Synchronization for Tiling

Thread 0
Thread 1
Thread 2
Thread 3
Thread 4

Thread N-3

Thread N-2
Thread N-1

Outline of Tiling Technique

— ldentify a tile of global memory contents that are accessed by
multiple threads

— Load the tile from global memory into on-chip memory

— Use barrier synchronization to make sure that all threads are ready
to start the phase

— Have the multiple threads to access their data from the on-chip
memory

— Use barrier synchronization to make sure that all threads have
completed the current phase

— Move on to the next tile

Anvpia /[unvore [

Objective

— To understand the design of a tiled parallel algorithm for matrix
multiplication
— Loading a tile
— Phased execution
— Barrier Synchronization

Data access pattern

— Each thread - a row of M and a
column of N

— Each thread block — a strip of M and a
strip of N

BLOCK_WIDTHE

BLOCK_WIDTH

WIDTH

T oo g

— Break up the execution of each
thread into phases

— so that the data accesses by the
thread block in each phase are
focused on one tile of M and one
tile of N

— The tile is of BLOCK_SIZE
elements in each dimension

BLOCK_WIDTH

: ss

Row !!_

BLOCK_WIDTHE

WIDTH

Col

T oo g

Loading a Tile

— All threads in a block participate
— Each thread loads one M element and one N element in tiled code

Anvpia /[unvore [

Phase 0 Load for Block (0,0)

No,o|NoriMoz oz E;‘m Shared Memory
Nio [N i“"..z_i; & 1
Np.0[No,1N2.2[No 3
N3 o[Ns 4 N3.2&;
Shared Memory
MG oMo rflerlo iﬁ,iﬂm Po.0{Po.1JPo.2|Po.3
Mo ’ﬂaq-ﬂhq;u "*‘." 1.1 PiolPig P1.2_ P,3
My 0[My,1jM2 5[M; 5 P2.0|P2.1|P2.2| P23
M3 olMs 1M o[M; 5 Loyl LW LEFiLEw

<ANVIDIA UNIMORE .

Phase 0 Use for Block (0,0) (iteration O)

No,o[No,1fNo.2|No 3 No,o| Mo, Shared Memory
Ny o[Ny N1.2_m; N_1 Q N_11

Shared Memory 1 1]
Mg,0[Mo,1jMg,2|Mo,3 I&Eﬁ:&m Po2|Po.s
Mi oMM oM] IM o o2 1|Pi2(Pis
My o[Mo, 1My 5[My 5 [P2.o[P21|P2a[P
M oMy M5 (M, [PoolPsilPoglPssl

<ANVIDIA UNIMORE .

Phase 0 Use for Block (0,0) (iteration 1)

No,o[No,1No.2|No,3 No.o|No.1| shared Memory
N [N NN Ny ol
Np.0[No,1N2.2[No 3
N3 o] N3 1IN3 5[N3 5|
Shared Memory]]
Mg ,0[Mo,1jMg2[Mos] [Mo.o[Mo o1%0/1|Po.2| Po.3
Mio[M Mo IM 1 Mg oM, o 211)P12(Pis
My o[Mo, 1My 5[My 5 [P2.o[P21|P2a[P
M3 o[M; 4IMs 5| M; 5 P3oP31]P3,|Pss

<ANVIDIA UNIMORE .

Phase 1 Load for Block (0,0)

No,o[No,1No.2|No,3
N, o[N; 4 N1.z_m; —
N, 5Nz N .NLCE Shared Mermory
N3 o[No oI5 2 NS | ﬂ:;
Shared Memory
Mg,0[Mo, 1Mo 2 [¥o5 : 0.3 Po,0|Po.1]Po.2|Po.3
M; o[M, 4 M1.;h P1 0[P P1.2_ P, 5
My 0[My,1jM2 5[M; 5 P2.0|P2.1|P2.2| P23
M3 ol M; 1 IM3 M3 5 Loy LRl ¥ La!

<ANVIDIA UNIMORE .

Phase 1 Use for Block (0,0) (iteration 0)

No,o[No,1No.2|No,3
Ny ol Ny 1IN N; 5|
Nz.0/N7.1 N5 2Ny 5 Nalo Mol shared Memory
N3 0[N3 1fN3 21 N5 5| Mo N:
Shared Memory 11
Mg ,0[Mo,1{Mo2[Mos] Moz 2e-ot3,1|Po,2 | Po.s
Mio[M MM L IM o 211)P12(Pis
My o[M, [My oM, 5 [P2.0[P2.1]P22[Po s
M ol M oMy oM, 4 [PoglPodP. ;P

<ANVIDIA UNIMORE .

: i, —
N20[N2. 1INz 2[No 3 NyoNa.q Shared Memory
N3 (N3 N3.2_&; PL}&_N.‘;
Shared Memory

T oo g

Phase 0 Phase 1

thread PValue o += PValue, (+=
Mds, o*Nds, o+ Mds, o*Nds, o+
MdSOJ *NdSLO MdSOJI *Ndsl,o

threadojl Pvalueo,l += PValueOJ +=
MdSOJO*NdSO,l + MdSOJO*NdSOJI +
Mds, *Nds; | Mds,;*Nds,

thread, , PValue, ; += PValue, , +=
MdSI,O*NdSO,O + MdSLO*NdSO,O +
Mdsl,l*NdSLO Mdsljl*Ndsl,O

threadhl PVﬂlueu 4= PValueU +=
Mds; (*Nds, ; + Mds, ¢*Nds ; +
Mdslbl*Ndslgl MdSI:I*Ndsl,l

time

T oo g

Execution Phases of Toy Example (cont.)

threadojo PvalueQO += PValueOJO +=
Vla *NdS0,0 + MdSO,O*NdSO,O +
(SO,I*NdSLO MdsO,l*NdSLO
thread, PValue,, += PValue, +=
Mdsy *Nds, ; + Mds, o*Nds, ; +
Mds(),l *Ndsu Mdso,l *Ndsl,l
thread, , PValue, , += PValue, o +=
MdSLO*NdS()j() + MdSI,O*NdSO,O +
Mdsl,l*Ndsl,O Mdsl,l*Ndsl,O
thread, PValue, | += PValue, ; +=
Mds, ¢*Nds, ; + Mds, (*Nds, ; +
Mdsl,l*NdSLI Mdsl,l*Ndsl,l
time g
Shared memory allows each value to be accessed by multiple
threads

Anvpia /[unvore [

Barrier Synchronization

— Synchronize all threads in a block
— __syncthreads()

— All threads in the same block must reach the __ syncthreads() before
any of the them can move on

— Best used to coordinate the phased execution tiled algorithms
— To ensure that all elements of a tile are loaded at the beginning of a phase
— To ensure that all elements of a tile are consumed at the end of a phase

Objective

— To learn to write a tiled matrix-multiplication kernel
Loading and using tiles for matrix multiplication

Barrier synchronization, shared memory

Resource Considerations

Assume that Width is a multiple of tile size for simplicity

Have each thread load an M
element and an N element at the
same relative position as its P
element.

int Row = by * blockDim.y + ty;

int Col = bx * blockDim.x + tx;

2D indexing for accessing Tile O:

L_M[Rowl][tx] |
N[ty][Col]

TILE_WIDTH

WIDTH

Col

TILE_WIDTHE

T oo g

— Have each thread load an M
element and an N element at the
same relative position as its P
element.

int Row = by * blockDim.y + ty;

int Col = bx * blockDim.x + tx;

2D indexing for accessing Tile O:
M[Row][tx]
N[ty][Col]

Row _

BLOCK_WIDTHE

BLOCK_WIDTH
WIDTH

Col

T oo g

2D indexing for accessing Tile 1:
M[Row][1*TILE_WIDTH + tx]

“N[TFTICEFWIDTH + ty][Col]

ROW - - - ----Z-C

L
I
=
&)
=
X
)
®]
|
[}

BLOCK_WIDTH

WIDTH

Col

T oo g

2D indexing for accessing Tile 1:
MI[Rowl[1*TILE_WIDTH + tx]
N[1*TILE*WIDTH + ty][Col]

ROW - - - ----Z-C

L
I
=
&)
=
X
)
®]
|
[}

BLOCK_WIDTH

WIDTH

Col

T oo g

M and N are dynamically allocated - use 1D indexing

M[Row][p*TILE_WIDTH+tx]
=) M[Row*Width + p*TILE_WIDTH + tx]

N[p*TILE_WIDTH-+ty][Col]
= N[(p*TILE. WIDTH-+ty)*Width + Col]

where p is the sequence number of the current phase

Tiled Matrix Multiplication Kernel

__global__ void MatrixMulKernel(float* M, float* N, float* P, Int Width)
{

__shared float ds M[TILE WIDTH] [TILE WIDTH];

~ shared float ds N[TILE WIDTH] [TILE WIDTH];

int bx = blockIdx.x; int by = blockIdx.y;
int tx = threadIdx.x; int ty = threadIdx.y;

int Row = by * blockDim.y + ty;
int Col = bx * blockDim.x + tx;
float Pvalue = 0;

// Loop over the M and N tiles required to compute the P element
for (int p = 0; p < n/TILE WIDTH; ++p) {

// Collaborative loading of M and N tiles into shared memory

ds M[ty][tx] = M[Row*Width + p*TILE WIDTH+tx];
ds N[ty][tx] = N[(t*TILE WIDTH+ty) *Width + Col];
__syncthreads () ;

for (int i = 0; i < TILE WIDTH; ++i)Pvalue += ds M[ty][i] * ds N[i] [tx];
~_synchthreads () ;

}
P[Row*Width+Col] = Pvalue;

Anvpia /[unvore [

Tiled Matrix Multiplication Kernel

__global__ void MatrixMulKernel(float* M, float* N, float* P, Int Width)
{
__shared float ds M[TILE WIDTH] [TILE WIDTH];

~ shared float ds N[TILE WIDTH] [TILE WIDTH];

int bx = blockIdx.x; int by = blockIdx.y;
int tx = threadIdx.x; int ty = threadIdx.y;

int Row = by * blockDim.y + ty;
int Col = bx * blockDim.x + tx;
float Pvalue = 0;

// Loop over the M and N tiles required to compute the P element
for (int p = 0; p < n/TILE WIDTH; ++p) {

// Collaborative loading of M and N tiles into shared memory

ds M[ty][tx] = M[Row*Width + p*TILE WIDTH+tx];
ds N[ty][tx] = N[(t*TILE WIDTH+ty) *Width + Col];
__syncthreads () ;

for (int i = 0; i < TILE WIDTH; ++i)Pvalue += ds M[ty][i] * ds N[i] [tx];
~_synchthreads () ;

}
P[Row*Width+Col] = Pvalue;

s Eanupia o/ unmore f

Tiled Matrix Multiplication Kernel

__global__ void MatrixMulKernel(float* M, float* N, float* P, Int Width)
{
__shared float ds M[TILE WIDTH] [TILE WIDTH];

~ shared float ds N[TILE WIDTH] [TILE WIDTH];

int bx = blockIdx.x; int by = blockIdx.y;
int tx = threadIdx.x; int ty = threadIdx.y;

int Row = by * blockDim.y + ty;
int Col = bx * blockDim.x + tx;
float Pvalue = 0;

// Loop over the M and N tiles required to compute the P element
for (int p = 0; p < n/TILE WIDTH; ++p) {

// Collaborative loading of M and N tiles into shared memory

ds M[ty][tx] = M[Row*Width + p*TILE WIDTH+tx];
ds N[ty][tx] = N[(t*TILE WIDTH+ty) *Width + Col];
__syncthreads () ;

for (int i = 0; i < TILE WIDTH; ++i)Pvalue += ds M[ty][i] * ds N[i] [tx];
~_synchthreads () ;

7
P[Row*Width+Col] = Pvalue;

Tile (Thread Block) Size Considerations

— Each thread block should have many threads
— TILE_WIDTH of 16 gives 16*16 = 256 threads
— TILE_WIDTH of 32 gives 32*32 = 1024 threads

— For 16, in each phase, each block performs 2*256 = 512 float
loads from global memory for 256 * (2*16) = 8,192 mul/add
operations. (16 floating-point operations for each memory load)

— For 32, in each phase, each block performs 2*1024 = 2048 float
loads from global memory for 1024 * (2*32) = 65,536 mul/add
operations. (32 floating-point operation for each memory load)

Shared Memory and Threading

— For an SM with 16KB shared memory
— Shared memory size is implementation dependent!

— For TILE_WIDTH = 16, each thread block uses 2*256*4B = 2KB of shared
memory.

— For 16KB shared memory, one can potentially have up to 8 thread blocks
executing

— This allows up to 8*512 = 4,096 pending loads. (2 per thread, 256 threads per block)

— The next TILE_WIDTH 32 would lead to 2*32*32*4 Byte= 8K Byte shared
memory usage per thread block, allowing 2 thread blocks active at the same time

— However, the thread count limitation of 1536 threads per SM in current
generation GPUs will reduce the number of blocks per SM to one!

— Each __syncthread() can reduce the number of active threads for a
block

— More thread blocks can be advantageous

Objective

— Tolearn to handle arbitrary matrix sizes in tiled matrix multiplication
— Boundary condition checking
— Regularizing tile contents
— Rectangular matrices

Anvpia /[unvore [

Handling Matrix of Arbitrary Size

» The tiled matrix multiplication kernel we presented so far can
handle only square matrices whose dimensions (Width) are
multiples of the tile width (TILE_WIDTH)

* However, real applications need to handle arbitrary sized matrices.

* One could pad (add elements to) the rows and columns into multiples
of the tile size, but would have significant space and data transfer time
overhead.

« We will take a different approach.

Phase 1 Loads for Block (0,0) for a 3x3 Example

Threads (1,0) and (1,1) need special

treatment in loading N tile

No.o/No.1|No.s s

Nyo[Ni N ol | —

Nz.o[No:tlos ili o1l Shared Memory

B
Shared Memory

Mo.o|Mo,1{Mo 2 ——iﬁ—) Po.o[Po.1]Po.

M o[M 1 IM 5] et PiolP1 1P,

My 0[Mg 1M, P2.0[P2.1|P2.2

Threads (0,1) and (1,1) need
special treatment in loading M tile

<ANVIDIA UNIMORE .

Phase 1 Use for Block (0,0) (iteration 0)

No.o[No,1INo.

NiolNiINiol |

N[N2.1IN2 2 I7 Nojs Shared Memory
Shared Memorly I

Mo,0[Mo,1]Mo Mﬁ_l_ipc q.1JPo.s

MMMl | INg—) Rl LEv1 .

M, o|M2 (IM2 5 IPz o[P2.1]P22

<ANVIDIA UNIMORE .

No.o|No.1INo.2
Ny 0[N, 4 N1.2_
N2’0 N2’1 N2’2 NZOj—IN21 Shared Memory
Shared Memory
Mo.o| Mo IM AR
0,0/Mo,1iMo,2 Mo.2 d.1]Po,2
M o[M 4 IM, 5| M, s el Lty
T IPZ,O o ¥

All Threads need special
treatment. None of them should
introduce invalidate contributions
to their P elements.

T oo g

Phase 0 Loads for Block (1,1) for a 3x3 Example

Threads (0,1) and (1,1) need special
treatment in loading N tile

P
No,o|No.1No2 N, >
NN L IN !N—; Shared Memory
1,0/ N1 10N o A
N2.0[N2,1 N2
Mo.ol Mo, Mo , [Po.o[Po.i]Po.
M o[M M, Shared Memor)le P JPi o]
M; o[My i M7o Ipz,o P2.1]P2.2
| |
L

Threads (1,0) and (1,1) need
special treatment in loading M tile

<ANVIDIA UNIMORE .

Major Cases in Toy Example

— Threads that do not calculate valid P elements but still need to
participate in loading the input tiles

— Phase 0 of Block(1,1), Thread(1,0), assigned to calculate non-existent P[3,2] but
need to participate in loading tile element N[1,2]

— Threads that calculate valid P elements may attempt to load non-
existing input elements when loading input tiles

— Phase 0 of Block(0,0), Thread(1,0), assigned to calculate valid P[1,0] but
attempts to load non-existing N[3,0]

A “Simple” Solution

— When a thread is to load any input element, test if it is in the valid index
range
— If valid, proceed to load
— Else, do not load, just write a 0

— Rationale: a 0 value will ensure that that the multiply-add step does not
affect the final value of the output element

— The condition tested for loading input elements is different from the test
for calculating output P element

— A thread that does not calculate valid P element can still participate in loading input tile
elements

No.o[No,1No,2

Ny o[N; N1.2_

N2’0 N2’1 N2’2 N§O:|N'JZ.1 Shared Memory
Shared Memory

Mo 0[Mo, 1Mo My,| O e-grc 11Po.2

M o[M 4 IM, 5| M, O s el Lty

Ma.o|M; 1[M; 2 IPZ,O P, |P2s

T oo g

Boundary Condition for Input M Tile

— Each thread loads
— M[Row][p*TILE_WIDTH+tX]
— M[Row*Width + p*TILE_ WIDTH+tx]
— Need to test
— (Row < Width) && (p*TILE_WIDTH+tx < Width)
— If true, load M element
— Else,load 0

A

Boundary Condition for Input N Tile

— Each thread loads
— N[p*TILE_WIDTH+ty][Col]
— N[(p*TILE_WIDTH+ty)*Width+ Col]
— Need to test
— (p*TILE_WIDTH+ty < Width) && (Col< Width)
— Iftrue, load N element
— Else,load 0

TILE_WIDTHILE_WIDT

4+——>

Loading Elements — with boundary check
— 8 for (int p =0; p < (Width-1) / TILE_WIDTH + 1; ++p) {

-+t if(Row < Width && t * TILE_WIDTH+tx < Width) {

- 9 ds_M[ty][tx] = M[Row * Width + p * TILE_WIDTH + tx];
- 4+ }else {

— 4+ ds_M[ty][tx] = 0.0;

— 4+ }

- ++ if (p*TILE_WIDTH+ty < Width && Col < Width) {

- 10 ds_N[ty][tx] = N[(p*TILE_WIDTH + ty) * Width + Col];
— 4+ }else {

— 4+ ds_N[ty][tx] = 0.0;

— 4+ }

- 1" __syncthreads();

Inner Product — Before and After

++ if(Row < Width && Col < Width) {

— 12 for (inti=0; i< TILE_WIDTH; ++i) {

- 13 Pvalue += ds_M[ty][i] * ds_N[i][tx];
- 3

— 14 _ syncthreads();

— 15 1} /* end of outer for loop */

— ++ if (Row < Width && Col < Width)

- 16 P[Row*Width + Col] = Pvalue;

— }/*end of kernel */

Some Important Points

— For each thread the conditions are different for
— Loading M element
— Loading N element
— Calculating and storing output elements

— The effect of control divergence should be small for large matrices

Handling General Rectangular Matrices

— In general, the matrix multiplication is defined in terms of rectangular
matrices
— Ajx kM matrix multiplied with a k x I N matrix results in a j x | P matrix

— We have presented square matrix multiplication, a special case

— The kernel function needs to be generalized to handle general
rectangular matrices
— The Width argument is replaced by three arguments: j, k, |
— When Width is used to refer to the height of M or height of P, replace it with j
— When Width is used to refer to the width of M or height of N, replace it with k
— When Width is used to refer to the width of N or width of P, replace it with |

e Eampia o unmore f

GPU Teaching Kit

Accelerated Computing

Mt
& e

i
b,
i

UNIMORE

B

=

=

5 LINIYERS A IZEGLE SIUISLLI
a: MODENA = REGGIO EMILIA
e

R
N e

2 g

1175

The GPU Teaching Kit is licensed by NVIDIA and the University of lllinois under
the Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode

