
CUDA Memories
Tiled Parallel Algorithms
Tiled Matrix Multiplication – kernel implementation
Handling Arbitrary Matrix Sizes in Tiled Algorithms

Memory and Data Locality

Accelerated Computing

GPU Teaching Kit

UNIMORE2

Objective

– To learn to effectively use the CUDA memory types in a parallel
program

– Importance of memory access efficiency

– Registers, shared memory, global memory

– Scope and lifetime

2

UNIMORE3

// Get the average of the surrounding 2xBLUR_SIZE x 2xBLUR_SIZE box
for(int blurRow = -BLUR_SIZE; blurRow < BLUR_SIZE+1; ++blurRow) {

for(int blurCol = -BLUR_SIZE; blurCol < BLUR_SIZE+1; ++blurCol) {

int curRow = Row + blurRow;
int curCol = Col + blurCol;
// Verify we have a valid image pixel
if(curRow > -1 && curRow < h && curCol > -1 && curCol < w) {

pixVal += in[curRow * w + curCol];
pixels++; // Keep track of number of pixels in the accumulated total

}
}

}

// Write our new pixel value out
out[Row * w + Col] = (unsigned char)(pixVal / pixels);

Review: Image Blur Kernel.

UNIMORE4

How about performance on a GPU

– All threads access global memory for their input matrix elements
– One memory accesses (4 bytes) per floating-point addition

– 4B/s of memory bandwidth/FLOPS

– Assume a GPU with
– Peak floating-point rate 1,500 GFLOPS with 200 GB/s DRAM bandwidth

– 4*1,500 = 6,000 GB/s required to achieve peak FLOPS rating

– The 200 GB/s memory bandwidth limits the execution at 50 GFLOPS

– This limits the execution rate to 3.3% (50/1500) of the peak
floating-point execution rate of the device!

– Need to drastically cut down memory accesses to get close to
the1,500 GFLOPS

UNIMORE5

M

N

P

BLOCK_WIDTH

WIDTHWIDTH

B
L

O
C

K
_
W

ID
T

H
E

W
ID

T
H

W
ID

T
H

Row

Col

Example – Matrix Multiplication

UNIMORE6

A Basic Matrix Multiplication

__global__ void MatrixMulKernel(float* M, float* N, float* P, int Width) {

// Calculate the row index of the P element and M

int Row = blockIdx.y*blockDim.y+threadIdx.y;

// Calculate the column index of P and N

int Col = blockIdx.x*blockDim.x+threadIdx.x;

if ((Row < Width) && (Col < Width)) {

float Pvalue = 0;

// each thread computes one element of the block sub-matrix

for (int k = 0; k < Width; ++k) {

Pvalue += M[Row*Width+k]*N[k*Width+Col];

}

P[Row*Width+Col] = Pvalue;

}

}

UNIMORE7

Example – Matrix Multiplication

__global__ void MatrixMulKernel(float* M, float* N, float* P, int Width) {

// Calculate the row index of the P element and M

int Row = blockIdx.y*blockDim.y+threadIdx.y;

// Calculate the column index of P and N

int Col = blockIdx.x*blockDim.x+threadIdx.x;

if ((Row < Width) && (Col < Width)) {

float Pvalue = 0;

// each thread computes one element of the block sub-matrix

for (int k = 0; k < Width; ++k) {

Pvalue += M[Row*Width+k]*N[k*Width+Col];

}

P[Row*Width+Col] = Pvalue;

}

}

UNIMORE8

A Toy Example: Thread to P Data Mapping

P0,1P0,0

P1,0

P0,2 P0,3

P1,1

P2,0 P2,2 P2,3P2,1

P1,3P1,2

P3,0 P3,2 P3,3P3,1

Block(0,0) Block(0,1)

Block(1,1)Block(1,0)

BLOCK_WIDTH = 2
Thread(0,0)

Thread(1,0)

Thread(0,1)

Thread(1,1)

UNIMORE9

Calculation of P0,0 and P0,1

P0,1M0,2

M1,1

M0,1M0,0

M1,0

M0,3

M1,2

P0,0

M1,3 P1,0

N3,0 N3,1

N2,1

N1,1

N0,1N0,0

N1,0

N2,0

P1,1

P0,1

UNIMORE10

Memory and Registers in the Von-Neumann Model

Memory

Control Unit

I/O

ALU
Reg
File

PC IR

Processing Unit

UNIMORE11

Programmer View of CUDA Memories

Grid

Global Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

Constant Memory

UNIMORE12

Declaring CUDA Variables

– __device__ is optional when used with __shared__, or __constant__

– Automatic variables reside in a register

– Except per-thread arrays that reside in global memory

Variable declaration Memory Scope Lifetime

int LocalVar; register thread thread

__device__ __shared__ int SharedVar; shared block block

__device__ int GlobalVar; global grid application

__device__ __constant__ int ConstantVar; constant grid application

UNIMORE13

Example:
Shared Memory Variable Declaration

void blurKernel(unsigned char * in, unsigned char * out, int w, int h)
{

__shared__ float ds_in[TILE_WIDTH][TILE_WIDTH];

…
}

UNIMORE14

Where to Declare Variables?

Can host

access it?

Outside of

any Function
In the kernel

global
constant

register
shared

UNIMORE15

Shared Memory in CUDA

– A special type of memory whose contents are explicitly defined and
used in the kernel source code

– One in each SM

– Accessed at much higher speed (in both latency and throughput) than global
memory

– Scope of access and sharing - thread blocks

– Lifetime – thread block, contents will disappear after the corresponding thread
finishes terminates execution

– Accessed by memory load/store instructions

– A form of scratchpad memory in computer architecture

UNIMORE16

Global Memory

Processing Unit

I/O

ALU

Processor (SM)

Shared

Memory
Register

File

Control Unit

PC IR

Hardware View of CUDA Memories

UNIMORE17

Objective

– To understand the motivation and ideas for tiled parallel algorithms
– Reducing the limiting effect of memory bandwidth on parallel kernel performance

– Tiled algorithms and barrier synchronization

UNIMORE18

Global Memory Access Pattern
of the Basic Matrix Multiplication Kernel

Thread 1 Thread 2
…

Global Memory

UNIMORE19

Tiling/Blocking - Basic Idea

Thread 1 Thread 2

…

Global Memory

On-chip Memory

Divide the global memory content into tiles

Focus the computation of threads on one or a small number

of tiles at each point in time

UNIMORE20

Tiling/Blocking - Basic Idea

Thread 1 Thread 2

…

Global Memory

On-chip Memory

UNIMORE21

Basic Concept of Tiling

– In a congested traffic system, significant reduction of vehicles
can greatly improve the delay seen by all vehicles

– Carpooling for commuters

– Tiling for global memory accesses

– drivers = threads accessing their memory data operands

– cars = memory access requests

21

UNIMORE22

Some Computations are More Challenging to Tile

– Some carpools may be easier than others
– Car pool participants need to have similar work schedule

– Some vehicles may be more suitable for carpooling

– Similar challenges exist in tiling

UNIMORE23

Carpools need synchronization.

– Good: when people have similar schedule

23

Worker A

Worker B

Time

sleep

sleep work

work

dinner

dinner

UNIMORE24

Carpools need synchronization.

– Bad: when people have very different schedule

24

Worker A

Worker B

time

sleep

sleep work

work

dinner

party

UNIMORE25

Same with Tiling

– Good: when threads have similar access timing

– Bad: when threads have very different timing

25

Thread 1

Thread 2

Time

Thread 1

Thread 2

Time

…

UNIMORE26

Barrier Synchronization for Tiling

UNIMORE27

Outline of Tiling Technique

– Identify a tile of global memory contents that are accessed by
multiple threads

– Load the tile from global memory into on-chip memory

– Use barrier synchronization to make sure that all threads are ready
to start the phase

– Have the multiple threads to access their data from the on-chip
memory

– Use barrier synchronization to make sure that all threads have
completed the current phase

– Move on to the next tile

27

UNIMORE28

Objective

– To understand the design of a tiled parallel algorithm for matrix
multiplication

– Loading a tile

– Phased execution

– Barrier Synchronization

UNIMORE29

M

N

P

BLOCK_WIDTH

WIDTHWIDTH

B
L

O
C

K
_
W

ID
T

H
E

W
ID

T
H

W
ID

T
H

Row

Col

Matrix Multiplication

– Data access pattern
– Each thread - a row of M and a

column of N

– Each thread block – a strip of M and a
strip of N

UNIMORE30

M

N

P

BLOCK_WIDTH

WIDTHWIDTH

B
L

O
C

K
_
W

ID
T

H
E

W
ID

T
H

W
ID

T
H

Row

Col

Tiled Matrix Multiplication

– Break up the execution of each
thread into phases

– so that the data accesses by the
thread block in each phase are
focused on one tile of M and one
tile of N

– The tile is of BLOCK_SIZE
elements in each dimension

UNIMORE31

Loading a Tile

– All threads in a block participate
– Each thread loads one M element and one N element in tiled code

31

UNIMORE32

Phase 0 Load for Block (0,0)

P0,1P0,0

P1,0

P0,2 P0,3

P1,1

P2,0 P2,2 P2,3P2,1

P1,3P1,2

P3,0 P3,2 P3,3P3,1

M0,1M0,0

M1,0

M0,2 M0,3

M1,1

M2,0 M2,2 M2,3M2,1

M1,3M1,2

M3,0 M3,2 M3,3M3,1

N0,1N0,0

N1,0

N0,2 N0,3

N1,1

N2,0 N2,2 N2,3N2,1

N1,3N1,2

N3,0 N3,2 N3,3N3,1

M0,1M0,0

M1,0 M1,1

N0,1N0,0

N1,0 N1,1

Shared Memory

Shared Memory

UNIMORE33

Phase 0 Use for Block (0,0) (iteration 0)

P0,1P0,0

P1,0

P0,2 P0,3

P1,1

P2,0 P2,2 P2,3P2,1

P1,3P1,2

P3,0 P3,2 P3,3P3,1

M0,1M0,0

M1,0

M0,2 M0,3

M1,1

M2,0 M2,2 M2,3M2,1

M1,3M1,2

M3,0 M3,2 M3,3M3,1

N0,1N0,0

N1,0

N0,2 N0,3

N1,1

N2,0 N2,2 N2,3N2,1

N1,3N1,2

N3,0 N3,2 N3,3N3,1

M0,1M0,0

M1,0 M1,1

N0,1N0,0

N1,0 N1,1

Shared Memory

Shared Memory

UNIMORE34

Phase 0 Use for Block (0,0) (iteration 1)

P0,1P0,0

P1,0

P0,2 P0,3

P1,1

P2,0 P2,2 P2,3P2,1

P1,3P1,2

P3,0 P3,2 P3,3P3,1

M0,1M0,0

M1,0

M0,2 M0,3

M1,1

M2,0 M2,2 M2,3M2,1

M1,3M1,2

M3,0 M3,2 M3,3M3,1

N0,1N0,0

N1,0

N0,2 N0,3

N1,1

N2,0 N2,2 N2,3N2,1

N1,3N1,2

N3,0 N3,2 N3,3N3,1

M0,1M0,0

M1,0 M1,1

N0,1N0,0

N1,0 N1,1

Shared Memory

Shared Memory

UNIMORE35

Phase 1 Load for Block (0,0)

P0,1P0,0

P1,0

P0,2 P0,3

P1,1

P2,0 P2,2 P2,3P2,1

P1,3P1,2

P3,0 P3,2 P3,3P3,1

M0,1M0,0

M1,0

M0,2 M0,3

M1,1

M2,0 M2,2 M2,3M2,1

M1,3M1,2

M3,0 M3,2 M3,3M3,1

N0,1N0,0

N1,0

N0,2 N0,3

N1,1

N2,0 N2,2 N2,3N2,1

N1,3N1,2

N3,0 N3,2 N3,3N3,1

M0,3M0,2

M1,2 M1,3

N2,1N2,0

N3,0 N3,1

Shared Memory

Shared Memory

UNIMORE36

Phase 1 Use for Block (0,0) (iteration 0)

P0,1P0,0

P1,0

P0,2 P0,3

P1,1

P2,0 P2,2 P2,3P2,1

P1,3P1,2

P3,0 P3,2 P3,3P3,1

M0,1M0,0

M1,0

M0,2 M0,3

M1,1

M2,0 M2,2 M2,3M2,1

M1,3M1,2

M3,0 M3,2 M3,3M3,1

N0,1N0,0

N1,0

N0,2 N0,3

N1,1

N2,0 N2,2 N2,3N2,1

N1,3N1,2

N3,0 N3,2 N3,3N3,1

M0,3M0,2

M1,2 M1,3

N2,1N2,0

N3,0 N3,1

Shared Memory

Shared Memory

UNIMORE37

Phase 1 Use for Block (0,0) (iteration 1)

P0,1P0,0

P1,0

P0,2 P0,3

P1,1

P2,0 P2,2 P2,3P2,1

P1,3P1,2

P3,0 P3,2 P3,3P3,1

M0,1M0,0

M1,0

M0,2 M0,3

M1,1

M2,0 M2,2 M2,3M2,1

M1,3M1,2

M3,0 M3,2 M3,3M3,1

N0,1N0,0

N1,0

N0,2 N0,3

N1,1

N2,0 N2,2 N2,3N2,1

N1,3N1,2

N3,0 N3,2 N3,3N3,1

M0,3M0,2

M1,2 M1,3

N2,1N2,0

N3,0 N3,1

Shared Memory

Shared Memory

UNIMORE38

Execution Phases of Toy Example

UNIMORE39

Execution Phases of Toy Example (cont.)

Shared memory allows each value to be accessed by multiple
threads

UNIMORE40

Barrier Synchronization

– Synchronize all threads in a block
– __syncthreads()

– All threads in the same block must reach the __syncthreads() before
any of the them can move on

– Best used to coordinate the phased execution tiled algorithms
– To ensure that all elements of a tile are loaded at the beginning of a phase

– To ensure that all elements of a tile are consumed at the end of a phase

UNIMORE41

Objective

– To learn to write a tiled matrix-multiplication kernel
– Loading and using tiles for matrix multiplication

– Barrier synchronization, shared memory

– Resource Considerations

– Assume that Width is a multiple of tile size for simplicity

2

UNIMORE42

M

N

P

TILE_WIDTH

WIDTHWIDTH

T
IL

E
_
W

ID
T

H
E

W
ID

T
H

W
ID

T
H

Row

Col

Loading Input Tile 0 of M (Phase 0)

– Have each thread load an M
element and an N element at the
same relative position as its P
element.

int Row = by * blockDim.y + ty;
int Col = bx * blockDim.x + tx;
2D indexing for accessing Tile 0:

M[Row][tx]
N[ty][Col]

UNIMORE43

M

N

P

BLOCK_WIDTH

WIDTHWIDTH

B
L

O
C

K
_
W

ID
T

H
E

W
ID

T
H

W
ID

T
H

Row

Col

Loading Input Tile 0 of N (Phase 0)

– Have each thread load an M
element and an N element at the
same relative position as its P
element.

int Row = by * blockDim.y + ty;
int Col = bx * blockDim.x + tx;
2D indexing for accessing Tile 0:

M[Row][tx]
N[ty][Col]

UNIMORE44

M

N

P

BLOCK_WIDTH

WIDTHWIDTH

B
L

O
C

K
_
W

ID
T

H
E

W
ID

T
H

W
ID

T
H

Row

Col

Loading Input Tile 1 of M (Phase 1)

2D indexing for accessing Tile 1:
M[Row][1*TILE_WIDTH + tx]
N[1*TILE*WIDTH + ty][Col]

UNIMORE45

M

N

P

BLOCK_WIDTH

WIDTHWIDTH

B
L

O
C

K
_
W

ID
T

H
E

W
ID

T
H

W
ID

T
H

Row

Col

Loading Input Tile 1 of N (Phase 1)

2D indexing for accessing Tile 1:
M[Row][1*TILE_WIDTH + tx]
N[1*TILE*WIDTH + ty][Col]

UNIMORE46

M[Row][p*TILE_WIDTH+tx]

M[Row*Width + p*TILE_WIDTH + tx]

N[p*TILE_WIDTH+ty][Col]

N[(p*TILE_WIDTH+ty)*Width + Col]

where p is the sequence number of the current phase

M and N are dynamically allocated - use 1D indexing

UNIMORE47

Tiled Matrix Multiplication Kernel
__global__ void MatrixMulKernel(float* M, float* N, float* P, Int Width)

{

__shared__ float ds_M[TILE_WIDTH][TILE_WIDTH];

__shared__ float ds_N[TILE_WIDTH][TILE_WIDTH];

int bx = blockIdx.x; int by = blockIdx.y;

int tx = threadIdx.x; int ty = threadIdx.y;

int Row = by * blockDim.y + ty;

int Col = bx * blockDim.x + tx;

float Pvalue = 0;

// Loop over the M and N tiles required to compute the P element

for (int p = 0; p < n/TILE_WIDTH; ++p) {

// Collaborative loading of M and N tiles into shared memory

ds_M[ty][tx] = M[Row*Width + p*TILE_WIDTH+tx];

ds_N[ty][tx] = N[(t*TILE_WIDTH+ty)*Width + Col];

__syncthreads();

for (int i = 0; i < TILE_WIDTH; ++i)Pvalue += ds_M[ty][i] * ds_N[i][tx];

__synchthreads();

}

P[Row*Width+Col] = Pvalue;

}

UNIMORE48

Tiled Matrix Multiplication Kernel
__global__ void MatrixMulKernel(float* M, float* N, float* P, Int Width)

{

__shared__ float ds_M[TILE_WIDTH][TILE_WIDTH];

__shared__ float ds_N[TILE_WIDTH][TILE_WIDTH];

int bx = blockIdx.x; int by = blockIdx.y;

int tx = threadIdx.x; int ty = threadIdx.y;

int Row = by * blockDim.y + ty;

int Col = bx * blockDim.x + tx;

float Pvalue = 0;

// Loop over the M and N tiles required to compute the P element

for (int p = 0; p < n/TILE_WIDTH; ++p) {

// Collaborative loading of M and N tiles into shared memory

ds_M[ty][tx] = M[Row*Width + p*TILE_WIDTH+tx];

ds_N[ty][tx] = N[(t*TILE_WIDTH+ty)*Width + Col];

__syncthreads();

for (int i = 0; i < TILE_WIDTH; ++i)Pvalue += ds_M[ty][i] * ds_N[i][tx];

__synchthreads();

}

P[Row*Width+Col] = Pvalue;

}

UNIMORE49

Tiled Matrix Multiplication Kernel
__global__ void MatrixMulKernel(float* M, float* N, float* P, Int Width)

{

__shared__ float ds_M[TILE_WIDTH][TILE_WIDTH];

__shared__ float ds_N[TILE_WIDTH][TILE_WIDTH];

int bx = blockIdx.x; int by = blockIdx.y;

int tx = threadIdx.x; int ty = threadIdx.y;

int Row = by * blockDim.y + ty;

int Col = bx * blockDim.x + tx;

float Pvalue = 0;

// Loop over the M and N tiles required to compute the P element

for (int p = 0; p < n/TILE_WIDTH; ++p) {

// Collaborative loading of M and N tiles into shared memory

ds_M[ty][tx] = M[Row*Width + p*TILE_WIDTH+tx];

ds_N[ty][tx] = N[(t*TILE_WIDTH+ty)*Width + Col];

__syncthreads();

for (int i = 0; i < TILE_WIDTH; ++i)Pvalue += ds_M[ty][i] * ds_N[i][tx];

__synchthreads();

}

P[Row*Width+Col] = Pvalue;

}

UNIMORE50

Tile (Thread Block) Size Considerations

– Each thread block should have many threads
– TILE_WIDTH of 16 gives 16*16 = 256 threads

– TILE_WIDTH of 32 gives 32*32 = 1024 threads

– For 16, in each phase, each block performs 2*256 = 512 float
loads from global memory for 256 * (2*16) = 8,192 mul/add
operations. (16 floating-point operations for each memory load)

– For 32, in each phase, each block performs 2*1024 = 2048 float
loads from global memory for 1024 * (2*32) = 65,536 mul/add
operations. (32 floating-point operation for each memory load)

50

UNIMORE51

Shared Memory and Threading

– For an SM with 16KB shared memory

– Shared memory size is implementation dependent!

– For TILE_WIDTH = 16, each thread block uses 2*256*4B = 2KB of shared
memory.

– For 16KB shared memory, one can potentially have up to 8 thread blocks
executing

– This allows up to 8*512 = 4,096 pending loads. (2 per thread, 256 threads per block)

– The next TILE_WIDTH 32 would lead to 2*32*32*4 Byte= 8K Byte shared
memory usage per thread block, allowing 2 thread blocks active at the same time

– However, the thread count limitation of 1536 threads per SM in current
generation GPUs will reduce the number of blocks per SM to one!

– Each __syncthread() can reduce the number of active threads for a
block

– More thread blocks can be advantageous

51

UNIMORE52

Objective

– To learn to handle arbitrary matrix sizes in tiled matrix multiplication

– Boundary condition checking

– Regularizing tile contents

– Rectangular matrices

UNIMORE53

Handling Matrix of Arbitrary Size

• The tiled matrix multiplication kernel we presented so far can
handle only square matrices whose dimensions (Width) are
multiples of the tile width (TILE_WIDTH)

• However, real applications need to handle arbitrary sized matrices.

• One could pad (add elements to) the rows and columns into multiples
of the tile size, but would have significant space and data transfer time
overhead.

• We will take a different approach.

UNIMORE54

Phase 1 Loads for Block (0,0) for a 3x3 Example

P0,1P0,0

P1,0

P0,2

P1,1

P2,0 P2,2P2,1

P1,2

M0,1M0,0

M1,0

M0,2

M1,1

M2,0 M2,2M2,1

M1,2

N0,1N0,0

N1,0

N0,2

N1,1

N2,0 N2,2N2,1

N1,2

M0,2

M1,2

N2,1N2,0 Shared Memory

Shared Memory

Threads (1,0) and (1,1) need special

treatment in loading N tile

Threads (0,1) and (1,1) need

special treatment in loading M tile

UNIMORE55

Phase 1 Use for Block (0,0) (iteration 0)

P0,1P0,0

P1,0

P0,2

P1,1

P2,0 P2,2P2,1

P1,2

M0,1M0,0

M1,0

M0,2

M1,1

M2,0 M2,2M2,1

M1,2

N0,1N0,0

N1,0

N0,2

N1,1

N2,0 N2,2N2,1

N1,2

M0,2

M1,2

N2,1N2,0 Shared Memory

Shared Memory

UNIMORE56

Phase 1 Use for Block (0,0) (iteration 1)

P0,1P0,0

P1,0

P0,2

P1,1

P2,0 P2,2P2,1

P1,2

M0,1M0,0

M1,0

M0,2

M1,1

M2,0 M2,2M2,1

M1,2

N0,1N0,0

N1,0

N0,2

N1,1

N2,0 N2,2N2,1

N1,2

M0,2

M1,2

N2,1N2,0 Shared Memory

Shared Memory

All Threads need special

treatment. None of them should

introduce invalidate contributions

to their P elements.

UNIMORE57

Phase 0 Loads for Block (1,1) for a 3x3 Example

P0,1P0,0

P1,0

P0,2

P1,1

P2,0 P2,2P2,1

P1,2

M0,1M0,0

M1,0

M0,2

M1,1

M2,0 M2,2M2,1

M1,2

N0,1N0,0

N1,0

N0,2

N1,1

N2,0 N2,2N2,1

N1,2

M2,1M2,0

N0,2

N1,2

Shared Memory

Shared Memory

Threads (0,1) and (1,1) need special

treatment in loading N tile

Threads (1,0) and (1,1) need

special treatment in loading M tile

UNIMORE58

Major Cases in Toy Example

– Threads that do not calculate valid P elements but still need to
participate in loading the input tiles

– Phase 0 of Block(1,1), Thread(1,0), assigned to calculate non-existent P[3,2] but
need to participate in loading tile element N[1,2]

– Threads that calculate valid P elements may attempt to load non-
existing input elements when loading input tiles

– Phase 0 of Block(0,0), Thread(1,0), assigned to calculate valid P[1,0] but
attempts to load non-existing N[3,0]

UNIMORE59

A “Simple” Solution

– When a thread is to load any input element, test if it is in the valid index
range

– If valid, proceed to load

– Else, do not load, just write a 0

– Rationale: a 0 value will ensure that that the multiply-add step does not
affect the final value of the output element

– The condition tested for loading input elements is different from the test
for calculating output P element

– A thread that does not calculate valid P element can still participate in loading input tile
elements

UNIMORE60

Phase 1 Use for Block (0,0) (iteration 1)

P0,1P0,0

P1,0

P0,2

P1,1

P2,0 P2,2P2,1

P1,2

M0,1M0,0

M1,0

M0,2

M1,1

M2,0 M2,2M2,1

M1,2

N0,1N0,0

N1,0

N0,2

N1,1

N2,0 N2,2N2,1

N1,2

0M0,2

M1,2 0

N2,1N2,0

0 0
Shared Memory

Shared Memory

UNIMORE61

Boundary Condition for Input M Tile

– Each thread loads
– M[Row][p*TILE_WIDTH+tx]

– M[Row*Width + p*TILE_WIDTH+tx]

– Need to test
– (Row < Width) && (p*TILE_WIDTH+tx < Width)

– If true, load M element

– Else , load 0

A

TILE_WIDTHTILE_WIDTH

UNIMORE62

Boundary Condition for Input N Tile

– Each thread loads
– N[p*TILE_WIDTH+ty][Col]

– N[(p*TILE_WIDTH+ty)*Width+ Col]

– Need to test
– (p*TILE_WIDTH+ty < Width) && (Col< Width)

– If true, load N element

– Else , load 0

B

T
IL

E
_
W

ID
T

H
T

IL
E

_
W

ID
T

H

UNIMORE63

Loading Elements – with boundary check
– 8 for (int p = 0; p < (Width-1) / TILE_WIDTH + 1; ++p) {

–

– ++ if(Row < Width && t * TILE_WIDTH+tx < Width) {

– 9 ds_M[ty][tx] = M[Row * Width + p * TILE_WIDTH + tx];

– ++ } else {

– ++ ds_M[ty][tx] = 0.0;

– ++ }

– ++ if (p*TILE_WIDTH+ty < Width && Col < Width) {

– 10 ds_N[ty][tx] = N[(p*TILE_WIDTH + ty) * Width + Col];

– ++ } else {

– ++ ds_N[ty][tx] = 0.0;

– ++ }

– 11 __syncthreads();

–

UNIMORE64

Inner Product – Before and After
– ++ if(Row < Width && Col < Width) {

– 12 for (int i = 0; i < TILE_WIDTH; ++i) {

– 13 Pvalue += ds_M[ty][i] * ds_N[i][tx];

– }

– 14 __syncthreads();

– 15 } /* end of outer for loop */

– ++ if (Row < Width && Col < Width)

– 16 P[Row*Width + Col] = Pvalue;

– } /* end of kernel */

UNIMORE65

Some Important Points

– For each thread the conditions are different for
– Loading M element

– Loading N element

– Calculating and storing output elements

– The effect of control divergence should be small for large matrices

UNIMORE66

Handling General Rectangular Matrices

– In general, the matrix multiplication is defined in terms of rectangular
matrices

– A j x k M matrix multiplied with a k x l N matrix results in a j x l P matrix

– We have presented square matrix multiplication, a special case

– The kernel function needs to be generalized to handle general
rectangular matrices

– The Width argument is replaced by three arguments: j, k, l

– When Width is used to refer to the height of M or height of P, replace it with j

– When Width is used to refer to the width of M or height of N, replace it with k

– When Width is used to refer to the width of N or width of P, replace it with l

GPU Teaching Kit

The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under
the Creative Commons Attribution-NonCommercial 4.0 International License.

Accelerated Computing

http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode

